Copied to
clipboard

G = C2×C336D4order 432 = 24·33

Direct product of C2 and C336D4

direct product, metabelian, supersoluble, monomial

Aliases: C2×C336D4, C62.113D6, (S3×C6)⋊18D6, (C32×C6)⋊6D4, C3321(C2×D4), (S3×C62)⋊4C2, C62(D6⋊S3), C62(C327D4), C335C411C22, (C3×C62).29C22, (C32×C6).58C23, (S3×C2×C6)⋊6S3, C6.68(C2×S32), D65(C2×C3⋊S3), (C2×C6).42S32, (C2×C3⋊S3)⋊19D6, C33(C2×D6⋊S3), (C3×C6)⋊6(C3⋊D4), (C22×C3⋊S3)⋊8S3, (S3×C3×C6)⋊18C22, C33(C2×C327D4), (C6×C3⋊S3)⋊16C22, (C2×C335C4)⋊8C2, C22.14(S3×C3⋊S3), C6.21(C22×C3⋊S3), C3211(C2×C3⋊D4), (C22×S3)⋊2(C3⋊S3), (C3×C6).147(C22×S3), (C2×C6×C3⋊S3)⋊3C2, C2.21(C2×S3×C3⋊S3), (C2×C6).23(C2×C3⋊S3), SmallGroup(432,680)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C2×C336D4
C1C3C32C33C32×C6S3×C3×C6C336D4 — C2×C336D4
C33C32×C6 — C2×C336D4
C1C22

Generators and relations for C2×C336D4
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=b-1, bf=fb, cd=dc, ece-1=c-1, cf=fc, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 1880 in 388 conjugacy classes, 92 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C32, C32, C32, Dic3, D6, D6, C2×C6, C2×C6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C22×S3, C22×S3, C22×C6, C33, C3⋊Dic3, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, C2×C3⋊D4, S3×C32, C3×C3⋊S3, C32×C6, C32×C6, D6⋊S3, C2×C3⋊Dic3, C327D4, S3×C2×C6, S3×C2×C6, C22×C3⋊S3, C2×C62, C335C4, S3×C3×C6, S3×C3×C6, C6×C3⋊S3, C6×C3⋊S3, C3×C62, C2×D6⋊S3, C2×C327D4, C336D4, C2×C335C4, S3×C62, C2×C6×C3⋊S3, C2×C336D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C3⋊D4, C22×S3, S32, C2×C3⋊S3, C2×C3⋊D4, D6⋊S3, C327D4, C2×S32, C22×C3⋊S3, S3×C3⋊S3, C2×D6⋊S3, C2×C327D4, C336D4, C2×S3×C3⋊S3, C2×C336D4

Smallest permutation representation of C2×C336D4
On 144 points
Generators in S144
(1 112)(2 109)(3 110)(4 111)(5 61)(6 62)(7 63)(8 64)(9 42)(10 43)(11 44)(12 41)(13 90)(14 91)(15 92)(16 89)(17 68)(18 65)(19 66)(20 67)(21 102)(22 103)(23 104)(24 101)(25 50)(26 51)(27 52)(28 49)(29 87)(30 88)(31 85)(32 86)(33 47)(34 48)(35 45)(36 46)(37 118)(38 119)(39 120)(40 117)(53 130)(54 131)(55 132)(56 129)(57 125)(58 126)(59 127)(60 128)(69 107)(70 108)(71 105)(72 106)(73 134)(74 135)(75 136)(76 133)(77 138)(78 139)(79 140)(80 137)(81 143)(82 144)(83 141)(84 142)(93 124)(94 121)(95 122)(96 123)(97 113)(98 114)(99 115)(100 116)
(1 40 42)(2 43 37)(3 38 44)(4 41 39)(5 106 115)(6 116 107)(7 108 113)(8 114 105)(9 112 117)(10 118 109)(11 110 119)(12 120 111)(13 96 65)(14 66 93)(15 94 67)(16 68 95)(17 122 89)(18 90 123)(19 124 91)(20 92 121)(21 125 129)(22 130 126)(23 127 131)(24 132 128)(25 32 140)(26 137 29)(27 30 138)(28 139 31)(33 73 141)(34 142 74)(35 75 143)(36 144 76)(45 136 81)(46 82 133)(47 134 83)(48 84 135)(49 78 85)(50 86 79)(51 80 87)(52 88 77)(53 58 103)(54 104 59)(55 60 101)(56 102 57)(61 72 99)(62 100 69)(63 70 97)(64 98 71)
(1 134 29)(2 30 135)(3 136 31)(4 32 133)(5 104 95)(6 96 101)(7 102 93)(8 94 103)(9 33 80)(10 77 34)(11 35 78)(12 79 36)(13 60 107)(14 108 57)(15 58 105)(16 106 59)(17 99 131)(18 132 100)(19 97 129)(20 130 98)(21 124 63)(22 64 121)(23 122 61)(24 62 123)(25 82 39)(26 40 83)(27 84 37)(28 38 81)(41 140 46)(42 47 137)(43 138 48)(44 45 139)(49 119 143)(50 144 120)(51 117 141)(52 142 118)(53 114 67)(54 68 115)(55 116 65)(56 66 113)(69 90 128)(70 125 91)(71 92 126)(72 127 89)(73 87 112)(74 109 88)(75 85 110)(76 111 86)
(1 26 47)(2 48 27)(3 28 45)(4 46 25)(5 54 16)(6 13 55)(7 56 14)(8 15 53)(9 87 141)(10 142 88)(11 85 143)(12 144 86)(17 72 23)(18 24 69)(19 70 21)(20 22 71)(29 83 42)(30 43 84)(31 81 44)(32 41 82)(33 112 51)(34 52 109)(35 110 49)(36 50 111)(37 135 138)(38 139 136)(39 133 140)(40 137 134)(57 93 113)(58 114 94)(59 95 115)(60 116 96)(61 131 89)(62 90 132)(63 129 91)(64 92 130)(65 101 107)(66 108 102)(67 103 105)(68 106 104)(73 117 80)(74 77 118)(75 119 78)(76 79 120)(97 125 124)(98 121 126)(99 127 122)(100 123 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 57)(2 60)(3 59)(4 58)(5 139)(6 138)(7 137)(8 140)(9 21)(10 24)(11 23)(12 22)(13 135)(14 134)(15 133)(16 136)(17 143)(18 142)(19 141)(20 144)(25 114)(26 113)(27 116)(28 115)(29 108)(30 107)(31 106)(32 105)(33 124)(34 123)(35 122)(36 121)(37 55)(38 54)(39 53)(40 56)(41 103)(42 102)(43 101)(44 104)(45 95)(46 94)(47 93)(48 96)(49 99)(50 98)(51 97)(52 100)(61 78)(62 77)(63 80)(64 79)(65 84)(66 83)(67 82)(68 81)(69 88)(70 87)(71 86)(72 85)(73 91)(74 90)(75 89)(76 92)(109 128)(110 127)(111 126)(112 125)(117 129)(118 132)(119 131)(120 130)

G:=sub<Sym(144)| (1,112)(2,109)(3,110)(4,111)(5,61)(6,62)(7,63)(8,64)(9,42)(10,43)(11,44)(12,41)(13,90)(14,91)(15,92)(16,89)(17,68)(18,65)(19,66)(20,67)(21,102)(22,103)(23,104)(24,101)(25,50)(26,51)(27,52)(28,49)(29,87)(30,88)(31,85)(32,86)(33,47)(34,48)(35,45)(36,46)(37,118)(38,119)(39,120)(40,117)(53,130)(54,131)(55,132)(56,129)(57,125)(58,126)(59,127)(60,128)(69,107)(70,108)(71,105)(72,106)(73,134)(74,135)(75,136)(76,133)(77,138)(78,139)(79,140)(80,137)(81,143)(82,144)(83,141)(84,142)(93,124)(94,121)(95,122)(96,123)(97,113)(98,114)(99,115)(100,116), (1,40,42)(2,43,37)(3,38,44)(4,41,39)(5,106,115)(6,116,107)(7,108,113)(8,114,105)(9,112,117)(10,118,109)(11,110,119)(12,120,111)(13,96,65)(14,66,93)(15,94,67)(16,68,95)(17,122,89)(18,90,123)(19,124,91)(20,92,121)(21,125,129)(22,130,126)(23,127,131)(24,132,128)(25,32,140)(26,137,29)(27,30,138)(28,139,31)(33,73,141)(34,142,74)(35,75,143)(36,144,76)(45,136,81)(46,82,133)(47,134,83)(48,84,135)(49,78,85)(50,86,79)(51,80,87)(52,88,77)(53,58,103)(54,104,59)(55,60,101)(56,102,57)(61,72,99)(62,100,69)(63,70,97)(64,98,71), (1,134,29)(2,30,135)(3,136,31)(4,32,133)(5,104,95)(6,96,101)(7,102,93)(8,94,103)(9,33,80)(10,77,34)(11,35,78)(12,79,36)(13,60,107)(14,108,57)(15,58,105)(16,106,59)(17,99,131)(18,132,100)(19,97,129)(20,130,98)(21,124,63)(22,64,121)(23,122,61)(24,62,123)(25,82,39)(26,40,83)(27,84,37)(28,38,81)(41,140,46)(42,47,137)(43,138,48)(44,45,139)(49,119,143)(50,144,120)(51,117,141)(52,142,118)(53,114,67)(54,68,115)(55,116,65)(56,66,113)(69,90,128)(70,125,91)(71,92,126)(72,127,89)(73,87,112)(74,109,88)(75,85,110)(76,111,86), (1,26,47)(2,48,27)(3,28,45)(4,46,25)(5,54,16)(6,13,55)(7,56,14)(8,15,53)(9,87,141)(10,142,88)(11,85,143)(12,144,86)(17,72,23)(18,24,69)(19,70,21)(20,22,71)(29,83,42)(30,43,84)(31,81,44)(32,41,82)(33,112,51)(34,52,109)(35,110,49)(36,50,111)(37,135,138)(38,139,136)(39,133,140)(40,137,134)(57,93,113)(58,114,94)(59,95,115)(60,116,96)(61,131,89)(62,90,132)(63,129,91)(64,92,130)(65,101,107)(66,108,102)(67,103,105)(68,106,104)(73,117,80)(74,77,118)(75,119,78)(76,79,120)(97,125,124)(98,121,126)(99,127,122)(100,123,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,57)(2,60)(3,59)(4,58)(5,139)(6,138)(7,137)(8,140)(9,21)(10,24)(11,23)(12,22)(13,135)(14,134)(15,133)(16,136)(17,143)(18,142)(19,141)(20,144)(25,114)(26,113)(27,116)(28,115)(29,108)(30,107)(31,106)(32,105)(33,124)(34,123)(35,122)(36,121)(37,55)(38,54)(39,53)(40,56)(41,103)(42,102)(43,101)(44,104)(45,95)(46,94)(47,93)(48,96)(49,99)(50,98)(51,97)(52,100)(61,78)(62,77)(63,80)(64,79)(65,84)(66,83)(67,82)(68,81)(69,88)(70,87)(71,86)(72,85)(73,91)(74,90)(75,89)(76,92)(109,128)(110,127)(111,126)(112,125)(117,129)(118,132)(119,131)(120,130)>;

G:=Group( (1,112)(2,109)(3,110)(4,111)(5,61)(6,62)(7,63)(8,64)(9,42)(10,43)(11,44)(12,41)(13,90)(14,91)(15,92)(16,89)(17,68)(18,65)(19,66)(20,67)(21,102)(22,103)(23,104)(24,101)(25,50)(26,51)(27,52)(28,49)(29,87)(30,88)(31,85)(32,86)(33,47)(34,48)(35,45)(36,46)(37,118)(38,119)(39,120)(40,117)(53,130)(54,131)(55,132)(56,129)(57,125)(58,126)(59,127)(60,128)(69,107)(70,108)(71,105)(72,106)(73,134)(74,135)(75,136)(76,133)(77,138)(78,139)(79,140)(80,137)(81,143)(82,144)(83,141)(84,142)(93,124)(94,121)(95,122)(96,123)(97,113)(98,114)(99,115)(100,116), (1,40,42)(2,43,37)(3,38,44)(4,41,39)(5,106,115)(6,116,107)(7,108,113)(8,114,105)(9,112,117)(10,118,109)(11,110,119)(12,120,111)(13,96,65)(14,66,93)(15,94,67)(16,68,95)(17,122,89)(18,90,123)(19,124,91)(20,92,121)(21,125,129)(22,130,126)(23,127,131)(24,132,128)(25,32,140)(26,137,29)(27,30,138)(28,139,31)(33,73,141)(34,142,74)(35,75,143)(36,144,76)(45,136,81)(46,82,133)(47,134,83)(48,84,135)(49,78,85)(50,86,79)(51,80,87)(52,88,77)(53,58,103)(54,104,59)(55,60,101)(56,102,57)(61,72,99)(62,100,69)(63,70,97)(64,98,71), (1,134,29)(2,30,135)(3,136,31)(4,32,133)(5,104,95)(6,96,101)(7,102,93)(8,94,103)(9,33,80)(10,77,34)(11,35,78)(12,79,36)(13,60,107)(14,108,57)(15,58,105)(16,106,59)(17,99,131)(18,132,100)(19,97,129)(20,130,98)(21,124,63)(22,64,121)(23,122,61)(24,62,123)(25,82,39)(26,40,83)(27,84,37)(28,38,81)(41,140,46)(42,47,137)(43,138,48)(44,45,139)(49,119,143)(50,144,120)(51,117,141)(52,142,118)(53,114,67)(54,68,115)(55,116,65)(56,66,113)(69,90,128)(70,125,91)(71,92,126)(72,127,89)(73,87,112)(74,109,88)(75,85,110)(76,111,86), (1,26,47)(2,48,27)(3,28,45)(4,46,25)(5,54,16)(6,13,55)(7,56,14)(8,15,53)(9,87,141)(10,142,88)(11,85,143)(12,144,86)(17,72,23)(18,24,69)(19,70,21)(20,22,71)(29,83,42)(30,43,84)(31,81,44)(32,41,82)(33,112,51)(34,52,109)(35,110,49)(36,50,111)(37,135,138)(38,139,136)(39,133,140)(40,137,134)(57,93,113)(58,114,94)(59,95,115)(60,116,96)(61,131,89)(62,90,132)(63,129,91)(64,92,130)(65,101,107)(66,108,102)(67,103,105)(68,106,104)(73,117,80)(74,77,118)(75,119,78)(76,79,120)(97,125,124)(98,121,126)(99,127,122)(100,123,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,57)(2,60)(3,59)(4,58)(5,139)(6,138)(7,137)(8,140)(9,21)(10,24)(11,23)(12,22)(13,135)(14,134)(15,133)(16,136)(17,143)(18,142)(19,141)(20,144)(25,114)(26,113)(27,116)(28,115)(29,108)(30,107)(31,106)(32,105)(33,124)(34,123)(35,122)(36,121)(37,55)(38,54)(39,53)(40,56)(41,103)(42,102)(43,101)(44,104)(45,95)(46,94)(47,93)(48,96)(49,99)(50,98)(51,97)(52,100)(61,78)(62,77)(63,80)(64,79)(65,84)(66,83)(67,82)(68,81)(69,88)(70,87)(71,86)(72,85)(73,91)(74,90)(75,89)(76,92)(109,128)(110,127)(111,126)(112,125)(117,129)(118,132)(119,131)(120,130) );

G=PermutationGroup([[(1,112),(2,109),(3,110),(4,111),(5,61),(6,62),(7,63),(8,64),(9,42),(10,43),(11,44),(12,41),(13,90),(14,91),(15,92),(16,89),(17,68),(18,65),(19,66),(20,67),(21,102),(22,103),(23,104),(24,101),(25,50),(26,51),(27,52),(28,49),(29,87),(30,88),(31,85),(32,86),(33,47),(34,48),(35,45),(36,46),(37,118),(38,119),(39,120),(40,117),(53,130),(54,131),(55,132),(56,129),(57,125),(58,126),(59,127),(60,128),(69,107),(70,108),(71,105),(72,106),(73,134),(74,135),(75,136),(76,133),(77,138),(78,139),(79,140),(80,137),(81,143),(82,144),(83,141),(84,142),(93,124),(94,121),(95,122),(96,123),(97,113),(98,114),(99,115),(100,116)], [(1,40,42),(2,43,37),(3,38,44),(4,41,39),(5,106,115),(6,116,107),(7,108,113),(8,114,105),(9,112,117),(10,118,109),(11,110,119),(12,120,111),(13,96,65),(14,66,93),(15,94,67),(16,68,95),(17,122,89),(18,90,123),(19,124,91),(20,92,121),(21,125,129),(22,130,126),(23,127,131),(24,132,128),(25,32,140),(26,137,29),(27,30,138),(28,139,31),(33,73,141),(34,142,74),(35,75,143),(36,144,76),(45,136,81),(46,82,133),(47,134,83),(48,84,135),(49,78,85),(50,86,79),(51,80,87),(52,88,77),(53,58,103),(54,104,59),(55,60,101),(56,102,57),(61,72,99),(62,100,69),(63,70,97),(64,98,71)], [(1,134,29),(2,30,135),(3,136,31),(4,32,133),(5,104,95),(6,96,101),(7,102,93),(8,94,103),(9,33,80),(10,77,34),(11,35,78),(12,79,36),(13,60,107),(14,108,57),(15,58,105),(16,106,59),(17,99,131),(18,132,100),(19,97,129),(20,130,98),(21,124,63),(22,64,121),(23,122,61),(24,62,123),(25,82,39),(26,40,83),(27,84,37),(28,38,81),(41,140,46),(42,47,137),(43,138,48),(44,45,139),(49,119,143),(50,144,120),(51,117,141),(52,142,118),(53,114,67),(54,68,115),(55,116,65),(56,66,113),(69,90,128),(70,125,91),(71,92,126),(72,127,89),(73,87,112),(74,109,88),(75,85,110),(76,111,86)], [(1,26,47),(2,48,27),(3,28,45),(4,46,25),(5,54,16),(6,13,55),(7,56,14),(8,15,53),(9,87,141),(10,142,88),(11,85,143),(12,144,86),(17,72,23),(18,24,69),(19,70,21),(20,22,71),(29,83,42),(30,43,84),(31,81,44),(32,41,82),(33,112,51),(34,52,109),(35,110,49),(36,50,111),(37,135,138),(38,139,136),(39,133,140),(40,137,134),(57,93,113),(58,114,94),(59,95,115),(60,116,96),(61,131,89),(62,90,132),(63,129,91),(64,92,130),(65,101,107),(66,108,102),(67,103,105),(68,106,104),(73,117,80),(74,77,118),(75,119,78),(76,79,120),(97,125,124),(98,121,126),(99,127,122),(100,123,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,57),(2,60),(3,59),(4,58),(5,139),(6,138),(7,137),(8,140),(9,21),(10,24),(11,23),(12,22),(13,135),(14,134),(15,133),(16,136),(17,143),(18,142),(19,141),(20,144),(25,114),(26,113),(27,116),(28,115),(29,108),(30,107),(31,106),(32,105),(33,124),(34,123),(35,122),(36,121),(37,55),(38,54),(39,53),(40,56),(41,103),(42,102),(43,101),(44,104),(45,95),(46,94),(47,93),(48,96),(49,99),(50,98),(51,97),(52,100),(61,78),(62,77),(63,80),(64,79),(65,84),(66,83),(67,82),(68,81),(69,88),(70,87),(71,86),(72,85),(73,91),(74,90),(75,89),(76,92),(109,128),(110,127),(111,126),(112,125),(117,129),(118,132),(119,131),(120,130)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3E3F3G3H3I4A4B6A···6O6P···6AA6AB···6AQ6AR6AS6AT6AU
order122222223···33333446···66···66···66666
size11116618182···2444454542···24···46···618181818

66 irreducible representations

dim111112222222444
type++++++++++++-+
imageC1C2C2C2C2S3S3D4D6D6D6C3⋊D4S32D6⋊S3C2×S32
kernelC2×C336D4C336D4C2×C335C4S3×C62C2×C6×C3⋊S3S3×C2×C6C22×C3⋊S3C32×C6S3×C6C2×C3⋊S3C62C3×C6C2×C6C6C6
# reps1411141282520484

Matrix representation of C2×C336D4 in GL6(𝔽13)

100000
010000
0012000
0001200
000010
000001
,
1210000
1200000
001000
000100
000010
000001
,
1210000
1200000
001000
000100
0000012
0000112
,
100000
010000
00121200
001000
000010
000001
,
220000
4110000
001000
00121200
000001
000010
,
1140000
920000
0012000
001100
000010
000001

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,4,0,0,0,0,2,11,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[11,9,0,0,0,0,4,2,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C2×C336D4 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes_6D_4
% in TeX

G:=Group("C2xC3^3:6D4");
// GroupNames label

G:=SmallGroup(432,680);
// by ID

G=gap.SmallGroup(432,680);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,b*f=f*b,c*d=d*c,e*c*e^-1=c^-1,c*f=f*c,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽